
Web
Services 2.0

Policy-driven Service Oriented Architectures
Thomas B Winans and John Seely Brown

May 2008

�

Section number
Section name

Web service-oriented architectures
do not just happen. Their
development is intentional, and
can be accomplished by
transforming existing architectures
over time, or as greenfield efforts.

This Working Paper discusses
architectural principles and
guidelines for developing service
oriented architectures from an
outside-in point of view to identify
characteristics of a service
architecture that will deliver the
potential of global web service-
based platforms for tomorrow’s
enterprise.

�

Web Services entered the technology scene somewhere between
1998 and 2000, not long after a subset of SGML called XML did the
same. Perception of Web Services began as “the next generation of
RPC” to, now, “the basis of standardizing interoperability between
heterogeneous application platforms, and on which tenets of modern
web architectures rest.”

Talk with technologists today about machine to machine software
interoperability invariably becomes a conversation about Web Services,
SOAP, and WSDL, and includes a sprinkling of WS-Security, WS-
ReliableMessaging, Semantic Web and Web 2.0 for good measure.
Conversations with software vendors are similar: they apply the term
service oriented architecture to their product platforms to imply
technology freshness, future proofing, and ease of standards-based
interoperability with prospective client and 3rd party application
systems.

However, when we consider how highly Web Services are touted as
the basis of next generation integration and application architectures,
we wonder why we don’t see more successful and widespread
implementations of service-oriented architectures that enable us to do
more than the application architectures that are hosted in enterprise
contexts today, with which we’ve become quite familiar.

We would expect to see easier enterprise application interoperability
(not just enterprise application integration), increased reuse of business
functionality, greater numbers of distributed applications, a more
usable web service registry than UDDI has unfortunately proven to
be, and hosted software exposing software as a service that becomes
governable, reliable, and robust such that it can be embedded in
enterprise applications. While we know that significant investments in
Web Services and service-oriented architectures are being made, but
we see neither the kind of revolutionary breakthroughs vis-à-vis Web
Services that indicate we’re able to more easily develop enterprise
application functionality using them, nor the ability to deploy them
more easily than applications provisioned on traditional application
architectures.

We believe one reason that we don’t see the success we’d expect
is that service orientation more commonly than not is viewed as an
add-on to existing architectures rather than a fundamental strategy
on which an architecture is based … a kind of wrapper put around
existing functionality solely to simplify systems integration. While Web
Services technology could be used in this way, doing so stops short of
the potential of a well-formed service-oriented platform.

A second reason is that even were we to take Web Service-oriented
architectures seriously, we have neither a means to find web services
(which arguably could be some form of LDAP database that could be
used both to meet design time registry and runtime directory needs),
nor a means to govern and manage their use.

The cost of not capitalizing on the potential of Web Services is so
high that it warrants a closer look at how Web Services should
be architecturally viewed. Without having a proper point of view
regarding architecture, we will find ourselves using Web Services only
as a commoditized enterprise application integration platform. The
travesty of such would be trading the nominal gains and optimizations
of implementing integrations between enterprise systems for those
of implementing loosely coupled services, possibly arranged in
service grid ecologies, that provision globally-scoped business process
networks.

Introduction

If Web Services are so revolutionary, why do we not see greater
success with their use?

One reason we may not see success with Web Services is simply
that there is unwillingness to grapple with the challenges of
platform modernization ... a problem with which all sizable IT
shops must deal at some point, whether they wish to or not.

A second reason we may not see success with Web Services is that
their effective use requires capability to govern use both at design
and run times. IT shops are not prepared for this, and required and
enabling infrastructure, e.g., a web service registry, has not been
implemented that addresses both design and runtime directory
and registry needs.

�

It seems that anyone who is anyone in Enterprise IT is pursuing a plan
to make his or her enterprise platform service oriented. Before actually
putting forward a definition of what that might mean, it is helpful to
describe the experience of one company that successfully undertook
that goal.

Rearden Commerce developed what it calls a personal assistant
network that over 135,000 merchants have joined because Rearden
implements a foundation of services that simplify use of the Internet
as a marketing and sales channel. Many times that number of
individual and corporate users have subscribed to Rearden to consume
its merchant services because Rearden also implements services
that enable corporate clients to set, monitor and manage travel
and expense policies, designate preferred vendors, and generally
enforce corporate purchasing policies. Now Rearden’s functionality
is provisioned by a service-oriented platform that supports service
composition to a user interface mashup level.

But Rearden’s architecture was not always a service-oriented one …

Prior to two and a half years ago, Rearden’s architecture was
essentially like many of the web applications we see today: three
tiered, open source web and application server technologies, and a
relational database that combined to expose a framework to which
merchant clients could interface to Rearden business “services” or
functions.

Rearden’s management team had the foresight to recognize the
company’s need to create a platform (not just an application), and the
corresponding need to make architecture changes to support more
rapid development and simpler deployment of new services. By this
time, Rearden already had clients, so it understood that change had to
be made transparently to its user base whenever possible, or in a way
that the user base viewed as a positive upgrade of capability to which
they could migrate as this became expedient to their business.

Rearden strengthened its leadership team with technologists who had
participated in web service infrastructure companies and could guide
in Rearden’s architecture modernization. This new leadership team
undertook a transformation of the company’s 3-tiered architecture to
a service-oriented one over a two year period. It started by developing
business service interfaces. It then began to eliminate duplicated
copies of code, componentizing functionality and building it out for
reuse. It focused on cleaning up the architectural mistakes of the past
by partitioning the platform into functional domains, and factoring out
business rules so that both Rearden and client rules could be managed
in one place, in a policy engine. After using service interfaces to wrap
the current implementations of their functionality, the technology
team was positioned to re-implement functioality to make it natively
service-oriented - an effort it has now completed. At the end of the
two and a half year period, Rearden had transformed its traditional
web application architecture to being a service oriented one.

During this process, Rearden had to make a number of key
architecture decisions:

• It had to decide whether or not the benefits of simply wrapping its
existing application were sufficient to meet future needs. Rearden
decided to transform the entire platform to service orientation
because of the benefits of reuse, composition, uniformity of
structure, modularity, and ease of deployment.

• It determined that policy must be formally managed in a way
that at least made it seem that policy was virtually centralized.
Conventional architectural wisdom is to layer business rules
management between the user interface layer and a business
objects or data layer within an application. But Rearden’s tens of
thousands of merchants and corporate users caused it to realize that
even a well-formed business rule layer would not make business rule
management simple: policy management had to become a formal
architecture component.

• It recognized its platform needed to be time sensitive. Time
becomes important when managing policies which are effective
from one point in time until another point in time. Without support
for time, Rearden could not easily evolve its platform as client

 policies evolved.

In Search of Web Services 2.0

Development of a service-oriented architecture requires
acknowledgment and understanding of the differences between
SOAs and the typical enterprise architecture.

�

And there are other challenges:

• Business transactions are long lived and do not conform to short
lived transaction semantics. An alternative unit of work semantic,
called compensation, must replace or at least complement the
transaction management techniques used to manage short

 lived transactions.

• People need to participate in long lived transactions, so the
architecture must enable such. Many times people are able to
correlate faults in context much faster than software systems that
usually can only detect faults from a known set and possibly fix
them – in prescribed ways. People also are necessary to maintain
policy constraints as business evolution occurs. Business conducted
over longer periods of time are impacted by market changes that a
software system would never detect as a form of exception.

• The granularity of functional interfaces must become more like
business functions that people perform and much less like fine
grained application programming interfaces. Fine grained interfaces
make interoperability between applications and between business
partners difficult because the fine granularity is, at least in part,
dictated by technology that provisions their business capabilities.
It is far easier to interoperate at business functional levels because
businesses largely perform common business tasks (where
interoperability often must take place) in similar ways.

• And traditional means of communication, e.g., paper documents
that either are faxed or scanned and voice technologies like the
phone, still must be used both as input and output communication
channels. Use of these technologies affects structure of business
processes and underscores the need for humans as first class actors
in architectures that scale beyond the enterprise.

�

The challenges noted above actually represent fundamental
architecture principles that are critical to successfully implementing
service oriented platforms – whether web service oriented or not. So
it is important to explore some of them further to establish a point of
view on developing next generation service oriented architectures.

We wish to highlight native service orientation, the importance
of implementing policy management as a formal architecture
component, the impact of a long lived transaction model, the
importance of people as formal actors in the architecture, and a
method to coordinate transactions that - at least in our view - more
effectively incorporates policy.

Native Service Orientation
An architecture that manages the life cycle of a homogeneous set of
architecture entities is simpler to manage than one that manages a
heterogeneous set. A conundrum that faces all architects developing
service oriented platforms is whether or not to make their architecture
manage services alone, or if there is room in the architecture for some
other kind of entity (e.g., services and objects co-exist, or services and
eventbased middleware applications co-exist).

Agreement about the way that functionality is provisioned by an
architecture is critical to keeping an architecture simple, flexible,
extendable, and manageable. Without such an agreement, an
architecture becomes complex, standards for development and
deployment become collections of special cases, and the architecture
devolves to a hodgepodge of modern as well as legacy functions
and technologies that might serve the current business model well
enough, but cannot accommodate change as a norm. The profundity
of this observation is the simplicity that results from constructing an
architecture to expose functionality in one way.

We’ve seen in enterprise application integration (EAI) products how
the EAI architecture has been extended to enable function- ality to be
exposed as services. We note that J2EE platforms have been similarly
extended. In hybrid architectures like this, functionality can be exposed
as services, objects, or events. The ddition of services to objectbased
or event-based architectures adds complexity to architecture use
forcing an architect or developer to choose between use of services,
objects, or events. The result is that services are used here, objects are
used there, and the mix of paradigms becomes confusing. It should
be clear that benefits relating to composition, reuse, extensibility,
and deployment are somewhat muted by the complexity of hybrid
architectures.

With all that said about hybrid architectures, one can point to
existence proofs where hybrid architectures have been deployed
and function well. But it is also important to note that such hybrid
architectures incorporate current-day enterprise notions of shortlived
transactions and prescriptive workflows that expose fine-grained
application programming interfaces, and these drag along with them
exception management and human mediation strategies that do not
scale to meet the requirements of long lived transactions, and more
traightforward interoperability that aligns with business functions.
Further still, applications wraped by a web service wrapper do not
meet requirements for time sensitivity, easier policy management,
and so forth.

Implementing a native service oriented architecture, an architecture
where services form the core functional primitives of the architecture,
naturally affords the benefits of a homogenous architecture. Note that
the term native could be taken to mean services and only services are
used to provision functionality in an architecture - clearly this is the
ideal case. But this may not be possible in reality. Are the benefits of
service oriented architecture still possible? Certainly! We have proof
points in operating systems today in the form of abstraction layers
for device and systems management that cause devices and systems
to look the same to the operating system, despite the fact that
they might be radically different in reality Unfortunately, architects
of enterprise platforms and their sponsors too often underinvest
in the implementation of abstraction layers that could simplify the
architecture in so many ways.

Policy Management
Policy can be thought of as a collection of rules to manage an
architecture and functionality built on it.

Architecture Fundamentals

IETF Terminology RFC3198

• “Policy” can be defined from two perspectives:
– A definite goal, course or method of action to guide and

determine present and future decisions
– Policies as a set of rules to administer, manage, and control

access to network resources (RFC3060)

• These two views are not contradictory since individual rules
may be defined in support of business goals

Andrea Westerinen, VP Technology, Cisco Systems, IEEE 2003 Policy onference

�

Modern application architectures typically have a business object or
business rule layer where all rules in a set of integrated applications
are placed so that they may be more easily managed. However, as
we consider distributing applications across enterprise boundaries by
exploiting web services, we quickly see that sources of business rules
exist all over the enterprise, making clear the need to manage policy
differently so that the policies of multiple enterprises can be managed
as easily as the rules of an integrated set of applications. To do so
requires factoring of policies out of application business layers and into
a policy engine so that it can at least appear to be centrally managed.

When policy is factored to be more easily managed, then there is
opportunity to extend how and where policy is applied. Perhaps it is
clear to readers how policy could be applied to the way that business
is conducted, or that infrastructure management policies can be
enforced by enterprise systems management platforms.

Policy influences...

• How customers and service providers interact
• How service providers and suppliers interact
• How work is accomplished, whether manual or automataed,

whether internal or external
• Where business is conducted, under what constraints, and

how it is reported
• How IT systems provision business functionality, and how they

interact with partner systesms
• How IT systems are operationally managed

�

However, the opportunity also exists to relate policy at the business
level to managing systems and network infrastructure. For example,
one could reason that it should be feasible for service providers to
prioritize use of their infrastructure (e.g., bandwidth, ser ver resources,
staff members, etc.) in order to ensure ser vice level agreements
to which they’ve contracted are not violated such that they must
pay some penalty. In order to do this, infrastructure policy must be
harmonized with business policy.

Business Policy Meets Infrastructure Management Policy
Application vendors and IT shops that enable or implement application
hosting understand the need to manage critical hosting and data
center resources, and the relationship between the ability to manage
them and a characterization of application resource requirements.
We’ve seen an early wave of virtualization products that enable
some management of constrained or limited resources in hosted
environments, but these kinds of products do not begin to formalize
the use of policies in a way that make it possible for application
systems to specify the resources they will need, together with
estimates of how much of these resources will be needed when, so
that resource usage policies can be constructed and refined as a
function of real-time monitoring. Cassatt Corporation recognizes the
need to manage resources using capabilities that exceed what we see
today in virtualization.

Cassatt has implemented what it calls Active Response, a data center
management platform that treats policy as a first class component,
and manages runtime policies using a Policy Engine. Policy is defined
in a declarative way and used together with configuration information
that defines resources and how they can be used. Policies can be used
to govern when resources in a Cassatt managed utility computing
environment can have their power cycled, when more of one set
of services should be available to manage peak load time or to
compensate for a server that had to be removed from service – taking
system dependencies and system redundancy requirements into
account.

It would be easy to consider policy in Active Response to be systems
management oriented and similar to HP Open View or IBM Tivoli.
But systems management is not a stopping point, and Cassatt takes
both systems management and virtualization - for that matter - to
an entirely new level by enabling dynamic policy-based resource
provisioning.

Policy provides one of a number of ways to relate virtual layers of an
architecture. Management platforms can correlate events that
have business meaning just as easily as they correlate system level
events, and these correlations can bind to SLAs which must be
monitored and enforced. Enforcement of a business SLA might lead to
resource dedication for a certain time (maybe immediately), and even

priority and policy-based preemption to commandeer resources for a
specific task until it is completed. In such a policy driven process, policy
could: optimize energy utilization in a data center; determine services
which need to run to meet current or very near-term projected
resource demands; and monitor functions that inform operations staff
of SLA violations averted when Active Response put a spare service
node into production in response to a greater-than-expected seasonal
peak load against critical business services.

Policy Meets Business Context
Factoring policy from the many component parts of an architecture
provides opportunity to make policy enforcement context sensitive.
Consider an application that manages medical records in a hospital,
and that secures access to services as a function of a medical
professional’s role in the hospital and in relationship to a particular
patient. Policy determines whether or not a professional can perform a
service at all, but also whether or not a service may be performed
relative to a particular patient. Can this professional see a particular
patient’s records or not? If the patient has HIV, how is that information
communicated to a professional allowed to see some but not all
records in a patient’s chart? When searching for information in
response to a legal request vs. an attending physician’s request, how
much of the hospital’s information should be considered valid for
search?

These questions identify points of context sensitivity that can be
captured in a policy definition, making policy far more dynamic in
nature than one might otherwise think.

Levels of Policy

• Goals –> Rules –> Device Commands
• Considering constraints (What can’t be allowed or can’t
 be done)
• Purpose to allocate and guide the operation of computing

and networking resources
• Manages and is driven by business and mission-critical data

and operations

Andrea Westerinen, VP Technology, Cisco Systems, IEEE 2003 Policy
Conference

�

Confluence of Policy
Policy can cut across all architecture layers – whether business or
infrastructure related. One could logically partition policy into policy
spaces, each relating to one area of an architecture. But how discrete
the policy spaces are depends upon the richness and extensibility of
the way that policy is defined in a platform. Hopefully the way to
define policy makes it feel like there is one policy space, and whether
policy is factored into separate spaces or not becomes immaterial.

In a service oriented architecture, policy spaces come together in a
runtime policy pipeline that exposes policy through pre, post, and
invariant extension points that provide opportunity to harmonize
policy spaces when necessary, and judge which policy should govern
when policy spaces cannot be harmonized (a human could even be
consulted to make such a determination at the last minute). Policy
configurations exposed as extension points can be used to publish
events monitored by a Policy Management system and, in turn,
indicate to system monitoring and business components that subscribe
to those events that resource use may be preempted, critical events
have occurred, and so forth.

As an example of how business and infrastructure management can
be brought together, consider Rearden on a Cassatt technology stack.
Their combination can illustrate a way to manage both infrastructure
and business policies using a common policy engine, enabling
harmonization of policies across infrastructure to business services
layers of a modern architecture to meet client and merchant business
service level agreement objectives and, at the same time, manage
operational costs using a utility cost model in which system, network,
and application resource consumption can become more predictable.

And perhaps just as important as managing policies across
manageable architecture resources is the capability Cassatt provides to
identify what can/cannot be managed, and what a reasonable service
level agreement could be in a Cassatt-supported service environment.

For example: Cassatt’s management layer could be used to monitor
round trip performance of services (e.g., 3rd party external services)
not directly under Cassatt’s control, ensure their access control policies
are enforced, and that request/response times fall within expected
time windows or appropriate alert notifications are raised/published so
that corrective actions could be taken if possible.

Another example: Seasonal peak loads are difficult to predict.
While research and modeling could be done to characterize normal
vs. seasonal system loads, there is nothing like use of real loads
to adaptively tweak policies where these can be tied to resource
consumption. In so doing, Cassatt’s Active Response could be used to
both alert of SLAs that might be in jeopardy, and to guide users when
creating new SLAs.

It could be argued that systems management platforms have offered
similar management capability for some time now, but we believe that
the recent acceptance of:
• service oriented architecture implementations,
• metadata-related innovations of modern service-oriented

architecture components,
• recognition of the importance of factoring policy out of applications

and services to enable global enterprises to more easily collaborate,
and

• recent innovations like those of Cassatt that provide benefits -
beyond the basic ones of virtualization – for management of utility-
based computing environments, all combine to form a disruptive
momentum toward policy-driven computing, provisioned by a
utility-based computing technology stack.

The Value of Time
Enterprise application systems today seldom tell time: the only time
they know is now. Temporal details of what goes on in an enterprise
system often are managed by setting up a data warehouse in which
details of system transactions are summarized for reporting purposes.
But summarizing history limits the way that past decisions made in a
system can be reproduced both for audit purposes. And the capability
to reproduce decisions as they would have been made at a particular
time is impossible with time sensitivity, and the ability to version
artifacts like business rules or entire policies. It is crucial in business
interactions to be able to prove that decisions made by the system in
the past on behalf of interaction participants conformed to policies in
force when the business interactions took place.

This translates into requirements on future systems to define and
manage a kind of audit-able version of information they manipulate.
This information must be managed like legal documents through
their life cycle, versioned on update, associated in a database sense
with policies that govern their production, and these policies must
be versioned and persisted, possibly in a way that enables multiple
versions of a single policy to simultaneously exist within a single
runtime.We have gotten into the habit of constructing software systems

that attempt to automate everything, and this is inappropriate.
Long running transactions cannot factor humans out of the mix.
And humans detect shifts in the business climate - which can be
treated as a kind of business exception - far sooner (usually) than a
software system.

�

Long Lived Transactions
A transaction is a collection of activities, sometimes called a unit
of work that must be executed as a unit or not at all. In modern
software architectures, technologies like databases and queues are
able to manage transactions local to them. For a transaction to be
coordinated across multiple resources (e.g., 2 databases), a transaction
protocol like XA must be supported by all resources involved in
the transaction so that it can be used by an external transaction
coordinator to synchronize activities and either committing or rolling
back the effects of their execution.

The duration of local or XA transactions typically is as short a time
as possible since, while a transaction is in progress, critical system
resources are locked and cannot be used to accomplish other work.
While most transactions provisioned by software systems today are
not XA because the transaction scope is managed within, say, a single
database, the transaction semantics can be thought of as a simpler
case of what is defined using XA, and duration considerations are
similar.

But as we begin to deal with globally scalable process networks, we
find that this kind of coordination of activities across critical resources
is ill-suited for coordinating the kind of coarse-grained activities of a
next generation service-oriented system since such activities could live
on for months at a time. Hence the need for additional unit of work
semantics. We use XA properties shown below, abbreviated by ACID,
as a discussion template:
• (Atomic) Activities with side effects either succeed or fail together.

When failure occurs, effects of all activities should be undone, and
the state of the execution environment should be rolled back to its
previous state;

• (Consistent) Unit of work activities transition the business from one
consistent state to another;

• (Isolated) Resource changes effected by unit of work activities are
not shared until the unit of work completes; and

• (Durable) Once a unit of work completes, its effects are guaranteed
despite any business infrastructure failures.

It is desirable that long-lived units of work also have ACID properties –
though it is not possible to make it so without relaxing the definitions
of these properties, so the notion of compensation is introduced
to represent the kind of undo activities that must be performed to
manage exceptions in long-lived units of work as follows:
• (Atomic) Failure in a long-lived unit of work must be dealt with in a

compensational manner. Compensation refers to a set of activities
that either reverses the effects of essential interaction activities
performed up to a point of failure and causes the interaction to halt,
or corrects the problem that triggered the exception and causes
execution of the unit of work to continue.

• (Consistent) Each unit of work must be expressed in the form of
goals it is to achieve, together with participant contracts that enable
participant coordination. The long-lived nature of the unit of work
underscores the importance of capturing unit of work state and
even its production goals so that, if necessary, a human being can
understand what has transpired up to and including failure, and
to determine how best to fix the problem causing the exception
condition in a way that leaves the system in a stable state.

• (Isolated) Unit of work content and state must be managed so that
it is not inappropriately shared before the outermost unit of work
(nesting must be permitted) completes. There is potentially a need
to declare within the definition of a unit of work when certain
information can be shared.

• (Durable) Durability of a unit of work means that changes made
to the execution environment by a unit of work that successfully
completes must be guaranteed despite any business infrastructure
failures. Aside from business-related changes, this includes state
changes of the unit of work itself. Durability also means that
completed unit of work results must be reliably communicated
to all business participants who wish to have them, for whatever
reason. If these results cannot be reliably communicated, then
compensatory activities must be triggered to roll the unit of
work back. Infrastructure that oversees the unit of work cannot
be obligated to guarantee that participants successfully process
communicated results since results might not be processed on a
timely enough basis (e.g. they could be processed on a batch basis).

The concept of compensation is not foreign in the Web Services world.
However, we note that its conceptualization as a protocol like XA
is nowhere near mature, and acceptance of Web Service standards
moving along a ‘unit of work’ management trajectory is not great.
This does not mean there is no way to implement compensation, only
that a standard way to do so has not surfaced and become widely
adopted.

�

People as First Class Actors
People in a next generation service-oriented architecture play at least
the following roles: exception handler which must compensate for
errors in a system in which long lived transactions occur; and workflow
manager/data processor that recognize when changes in business the
business climate are not accurately reflected in business policy.

Exception Handler
Exception handling vis-à-vis short-lived transactions usually equates
to reverting system state to the what it was prior to some system or
application failure, and then displaying some dialog box containing a
brief description of the problem.

This won’t work in long lived business interactions. Instead, faults
must be managed with compensation plans that quite likely will
require greater human interaction while special cases for handling
the specifics of business interactions are devised and standardized.
Short-lived transaction rollback is a considerably simpler approach to
managing faults since its concern is to rollback any work performed
in a transactional resource so that the resource is left in (presumably)
the steady state it was in when the failed transaction began. But,
while the principles are similar with respect to undoing the effects of
a long lived transaction, what does it mean to “undeliver” product
once a truck has left a warehouse? It might mean making inventory
adjustments such that the truck that left the warehouse moves
product to another warehouse. Additionally, it might mean ordering
more product to restock the warehouse from which the product was
removed given a known increase in demand. It may be possible to
define, in advance, what must be done to compensate for exceptions
in long lived business interactions or units of work. But even these
compensation plans may age such that it behooves a business to make
it possible to engage humans in the compensation process.

Further, exception handling must include the notions of business
and market change to current business capabilities as well as fault
management. Changes of conditions in the market place, while
not specifically a fault in some software system, represent a change
to policy that may not be expected in a system sense. The value of
separating and formally managing policy has been discussed above.
But we note that humans usually detect such market changes, and
ultimately must manage related policy exceptions, so it is critical that
humans should be formally incorporated as exception handling actors
in a next generation architecture.

Workflow Manager/Data Processor
When systems support long lived transactions, it must be possible
to keep policies versioned and current to reflect changes in the
business environment that they, in some sense, functionally provision.
Usually the system actor that first recognizes change is a person, who
subsequently must be able to update business policies to reflect a
new reality, etc. So embedding a human into an otherwise automated
business process requires rethinking of how workflows/process flows
implemented as composite web services should be implemented.

Workflow and other business process management technologies are
now well-known within today’s enterprise as a means to coordinate
sequential activities to perform some business function. The software
used to manage workflows, sometimes called a workflow engine,
manages directed graphs of activities and coordinates people around
performance of these sequenced activities in a way that has enabled
software application vendors to make workflow in their respective
applications very configurable and flexible.

However, as process networks are deployed beyond current day
enterprise boundaries, sequential workflow proves insufficient to
flexibly manage coordinated activities for at least the following
reasons:
• Sequential vs. State Machine/Policy-driven Workflow: As previously

noted, the granularity of functional interfaces must become more
coarsely grained and correlate better to the tasks that people
perform when conducting business. When such interfaces do
become coarse-grained, it is common to see that these interfaces
begin to manipulate documents as sets of information that correlate
directly with the way that people would exchange information were
there no intermediary software system. We note that documents
that can be managed by some software system usually have a
well defined schema to which constraints – yes, here is a direct
link to policy – can be associated. And constraints can be used
to orchestrate workflow with a state machine that transitions on
the state change of a document – regardless of what mechanism
(technology or human) was used to cause the change.

• “Legacy” media types: Information to be processed in business
interactions may not be in a digitally parse-able form: content may
be in the form of voice files, scanned images, PDF files, or JPEG or
TIFF images that contain data most easily processed by a human
– whether that human extracts relevant content for future system
processing, or that the human directly processes content embedded
in such media. Sequential workflows are not terribly useful in this
case.

�0

The opportunity to transition away from prescriptively sequential
workflows results in a loose coupling between process networks
and systems that participate in provisioning the functionality they
coordinate. The value of state driven flow is that it can be more
explicitly policy driven, and it is better suited to human interaction and
mediation.

Another consequence of rethinking how interactions are coordinated
and making them policy based is that this process forces us as business
process architects to define key events in business interactions that are
meaningful to people as well as systems. As state changes occur in
long running business interactions, workflows must be instrumented
to enable business partners to monitor and actively participate in
business interactions beyond basic invocation of platform functionality.
This visibility into the life cycle of business interactions enables
business partners to tune and refine their business and system
processes, both of which are fundamental to evolving their business
models to be increasingly global.

Flexible Process Network Definition
One other benefit to state machine oriented and policy driven
workflow is the ease with which new roles and role players can be
introduced into active process networks.

TradeCard is a New York-based company that provides supply chain
management solutions to business partners distributed in ~40
countries world-wide, which we refer to as TradeCard Network
Members, or TNMs, for the sake of the subsequent discussion. With its
3500+ client implementations (almost double the number published
in July 2007), TradeCard’s goal is to optimize business interactions
between TNMs by synchronizing them with physical events that occur
between issuing a purchase order and delivering a product/service.
In turn, this provides TNMs with good visibility to the status of work
being conducted in a TradeCard-enabled context and enables efficient
and timely triggering of payment and chargeback events.

TradeCard’s service offering is a combination of technology and
people who operate on the boundary between technology-enabled
companies and the companies that are not so technology-enabled
with whom they partner. The need to download TradeCard software is
avoided by making business functionality available through commonly
available Internet browser technology. TradeCard also exposes a secure
Internet-accessible messaging API that enables its clients to access
TradeCard services using their own applications and infrastructure so
long as Internet connectivity is available. And, where infrastructure
technology is unavailable, TradeCard helps to make it available by
provisioning workstations to suppliers, making its staff members
available to assist in getting information into the TradeCard system
and ensuring business rule compliance, or a combination of both.
TradeCard’s architecture, like Cassatt’s and Rearden’s described
elsewhere in this document, treats policy as a first class citizen.
Policy is composed of international trade-related policies, policy that
TradeCard calls rules of engagement which determines how TNMs
interact in a TradeCard business context, and local TNM policies. These
policies are harmonized, though TradeCard itself is responsible for
doing so as opposed to having some semi- or fully-automated means
to do … TradeCard develops policies for its clients and ensures their
harmonization with TradeCard and regulatory policies.

��

Business interactions in a TradeCard environment are defined
using roles that specify TNM responsibilities. A role is a named set
of business functions that a TNM agrees to perform in a business
interaction context, and is analogous to the modern day software
concepts of protocols and interfaces. TradeCard’s platform
implementation permits role players (TNMs) to be linked to a specified
role either before or after starting a business interaction.

As noted earlier, TradeCard has an extensive client base with which it
has direct relationships, in the sense that client business is conducted
using TradeCard’s hosted services and staff members (where human
services are required). Because TradeCard directly participates with
TNMs in their business and has full visibility to the details of all TNM
business interactions, and because it is able to late bind role players
to roles in a business interaction, it is uniquely positioned to add
new value-added services to its service platform. This capability is
fundamental to accommodating long lived business interactions in
which policies might change, or new TNMs begin participating in
already running business interactions. For example: TradeCard became
aware of the impact of a change in a buyer’s payment strategy
relating to a specific supplier where buyer wanted to pay invoices on
a 45-day basis, but supplier needed to be paid on a 30-day or better
basis. TradeCard was able to broker a private relationship between
the supplier and a financing agency such that the financing agency
would pay the supplier, charging the supplier a fee for early payment,
and TradeCard subsequently would direct the buyer’s payment to the
financing agency instead of the supplier without making the buyer
aware of the redirection. Despite the fact that TradeCard introduced
a new (and private) role (played by a human) into an already running
workflow, no workflow restart was necessary because of the way
TradeCard has implemented its platform.

��

To this point, we’ve discussed various challenges that most certainly
will be encountered when pursuing the potential of next generation
Web Services-oriented architectures. We now would like to flesh out
the need of an architecture point of view that helps us to implement
a next generation architecture that satisfies the requirements noted
earlier in this paper.

When playing the role of software architect, people look at application
and technology systems from various points of view to understand
what important functions should exist in a system, how they should
be organized and made available for consumption, what user roles
are permitted to use which functionality, how system components
couple, and so forth. The terms bottom-up or top-down are software
industry terms that relate to compositional and decompositional points
of view to do exactly this. Architects make certain assumptions about
the deployment context of systems when examining system behavior
from either of these points of view. And since the vast majority of
applications developed today are developed to support the enterprise,
many of the assumptions architects make are predicated on current
best practice enterprise concepts relating to application system
structure, application integration strategy, network topology, the
specific realities of the current IT spending model, etc.

But as we consider the ways that business will be conducted in
the future, these assumptions are invalidated. For example: it may
well be the case that there is no single point of control in a loosely
coupled enterprise of the future. Who plays which roles and has
what responsibilities most likely will be variable across the set of
interactions in which business partners collaborate, and business rules
governing how business is conducted using software systems will
have to resemble the real world rather than be prescribed by a best of
breed or bespoke application – minimally because there could be no
standardized set of applications.

Because traditional assumptions are invalid in this future state,
it is clear there will be impact to the way that business software
functionality is constructed. So it is necessary to form a point of
view – maybe many, ultimately – on how to build out service-based
platforms around this new set of assumptions and norms. There
appears to be at least two possibilities:
• Assume that all enterprises could be made to look like some

standard virtual enterprise model to which enterprises wishing to
collaborate must integrate - presumably through a Web Services
layer, and that service-based applications should be developed for
the virtual enterprise; or

• Assume today’s enterprise is an invalid foundation on which a future
enterprise should be based, that determining a standard definition
of an enterprise is an unachievable goal, that the only sensible
interoperability between business entities is realized at the business
functional level (in the context of a business process network), that
the technical means to interoperate is Web Services based, and that
interoperability must be policy-driven.

For ease of discussion we name the first of these points of view inside-
out and the second outside-in, we characterize them further below,
and we argue that the outside-in point of view should be preferred
over inside-out when considering an architecture point of view for
tomorrow’s enterprise architecture.

Inside-Out Architectures
We define inside-out as the point of view that assumes today’s
enterprise is a reasonable foundation on which tomorrow’s enterprise
could be based, and we can see the outcome of taking this point
of view by considering past efforts in the enterprise application
integration (EAI) market place to scale an enterprise application
platform beyond traditional enterprise boundaries.

EAI infrastructure has been used by enterprises to integrate their
best of breed applications used in front and back offices. Usually
some form of Event or Message Broker is put into place to broadcast
changes to important/common data entities, and application adapters
– that expose fine-grained programming APIs of these applications
in event or message forms – serve as publishers of and subscribers to
events that coordinate data synchronization.

Applications constructed using EAI technologies start as basic
data synchronization applications that recognize when some
data entity changes in an application database and ensures other
forms of the same data entity in other application databases are
synchronized. These basic applications are composited into more
complex applications that filter and correlate multiple events into an
aggregated or higher order business event. As more complex event-
processing applications are constructed, ordered collections of these
applications resemble workflows, process flows, or business services.

XA transactional semantics (n-phase commits/rollbacks) may or may
not be supported depending upon underlying messaging transports,
and then, if XA transactional support does exist, it usually only applies
to message or event delivery (it is up to an event subscriber to process
an event and inform the application system if a processing exception
must be raised). Actual rollback of the effects of publishing events
or messages must be implemented using compensational semantics
– i.e., for critical “do” activities there must be compensational “undo”
activities.

Forming an Architecture Point of View

��

Anyone who has implemented application integrations within a
single enterprise using EAI technologies, especially an enterprise
having a large application portfolio, is familiar with the challenges of
building them. The list of challenges includes but is not limited to the
following:
• The need to designate one application system as a source of record

for each important data entity that triggers integration activities,
thus defining a kind of canonical data schema.

• Harmonizing unique identifier schemes across application
boundaries.

• Capturing the business context in which a data entity changed so
that appropriate business rules can be used to determine how the
integration application should function.

Extending EAI across today’s enterprise boundaries is doable. Many
EAI vendors have added web service technology components to their
offerings to support doing so. When all members of a partnership
deploy the same infrastructure (suggesting there are no significant
infrastructure or application impedance mismatches because
application APIs and business processes are the same, or at least very
similar), this approach to service enablement can work. However, there
are limits to this type of architecture, and these should be considered
carefully before attempting to take an inside-out point of view where
infrastructure, and information, service and process models are not
common:
• Data synchronization across enterprise boundaries becomes

complicated due to technology choices that partnering enterprises
have made. Technology differences often introduce semantic
mismatches relating to important data entities that must be
reconciled.

• Differences in policies/business rules embedded in best of breed
applications and in integration applications must be harmonized.
Today’s enterprise application systems often embed business
policies in them, and make them difficult (at best) to modify/adjust
to address policy differences between partners. Integration of
applications with embedded policies usually requires custom code or
compromises regarding policy because there usually is no (virtually)
centralized means to manage policy.

• Making it possible for applications to interface with EAI middleware
is sometimes difficult.

• Hybrid application architectures often expose functionality in the
form of objects, components, entity beans, XML interfaces, SQL,
event handlers, etc. The state and life cycle management of these
different functional entities are difficult to harmonize, and it is
unusual to see a built-out homogenous abstraction layer around
all these different technologies complete enough to make their
management transparent.

• There usually is a higher than desirable degree of technology
coupling when enterprise applications are integrated in this type of
architecture, decreasing maintainability and the potential for reuse.

• People are difficult to integrate into the integrated system since
most user interfaces in such an architecture have been developed
for the applications that are integrated. This makes human
involvement in long lived transactions difficult at best.

Outside-In Architectures
Even with the challenges noted above, it is entirely possible to
implement what some might call a service oriented architecture.
However, we believe that the assumption that today’s enterprise
model serves as a model for distributed enterprises that forms around
process networks is fundamentally flawed because a central locus of
control is inherent in the model. It is quite probable that businesses in
the future will interoperate in a model that is served much better by a
model that is fundamentally distributed.

So, as an alternative to the inside-out point of view, we consider an
outside-in point of view which:
• Stresses functional decomposition that aligns business services with

web services rather than requiring that business services conform to
existing business interfaces and capabilities;

• Pushes business services as far down into an architecture as possible
(all the way if feasible), forcing architecture simplification and
encapsulation of any provisioning technologies beneath a service-
based abstraction layer, instead of exposing and pushing upward
hardwired business processes, data structures, and technology
decisions associated with underlying technologies;

‣ Encapsulation of provisioning technologies decreases technology
coupling, increases maintainability, increases reuse potential, and
simplifies integration and interoperability;

• Factors policy from these services and separately manages it to more
easily accommodate changes over time, make it feasible to reconcile
business policies to infrastructure management policies, make policy
temporal, and version policy.

Applications built on an outside-in architecture are services. Services
may be primitive (i.e., their methods may not be decomposable into
services), or they may be composite. Ideally, services are stateless,
independent and self-contained as possible with respect to the
control that they hold over their underlying logic. The functionality of
business services is only accessed through its service layer to ensure
very loose coupling between services. Even when leveraging legacy
application systems to provision services, the goals of loose coupling
and self-containment are pursued to enable replacement of service
implementations when this is desirable.

We believe that the assumption that today’s enterprise model
serves as a model for a distributed enterprise that forms around
process networks is fundamentally flawed because a central locus
of control is inherent in the model.

��

XA transactionality of technologies that provision web services is
entirely encapsulated, since this is viewed as an implementation
concern. XA transactional semantics over web services and
compensational semantics must be supported in a web service
standards-compliant way – and should be limited in their use …
transactional semantics arguably can be viewed as exposing the
specifics of implementation choices in many cases (we exclude n-phase
commit business cases such as would be common in financial trading
and banking applications), and such exposure should be viewed as
architecturally unacceptable.

Pushing services far down into an architecture stack, as close to
technology that provisions the business service as possible, simplifies
an architecture often by obviating the need of middleware that has
become superfluous over time as commercial application vendors
have begun to service enable their products. Business functionality
natively designed for use as services is ideal. Services provisioned
using 3rd party applications often can be written to leverage vendor
APIs to construct web service-enabled adapters that fully encapsulate
fine-grained application API calls without the need of legacy
middleware products. Requests made of an adapter constructed in
this fashion usually are accompanied by information in larger/coarse
and complete enough chunks that make it possible for the adapter
to minimize out-of-process/over-the-network requests for additional
information it requires, so the end result of pushing services down
into an architecture stack can be the removal of (now) superfluous
middleware components, and less network chattiness.

An outside-in architecture fosters agility in the context of multi-
party business interactions. Services in an outside-in architecture are
constructed to be self-contained and very loosely coupled vis-à-vis
technology and infrastructure dependencies. This results in the ability
for participants in multi-party interactions to change roles as long as
they implement services corresponding to the roles they intend to
play. While this could be accomplished in an inside-out architecture,
an outside-in architecture is less encumbered/constrained by existing
roles and business process flows that are built into underlying/existing
applications. And the ability to more explicitly and conveniently
manage policy enables business rules to be changed rapidly, and in a
way that minimizes code-level impact.

Outside-in architectures sidestep the types of challenges of an inside-
out architecture because of the fact that business context is a part of
each business interaction:
• Data synchronization is not the aim of an outside-in architecture.

However, because information that is shared between interaction
participants is complete in the sense that it does not leverage insider
IT application information about business entities but, instead, is
formed as complete information sets, data synchronization is a nice
side effect.

• Policy is not embedded in the technologies used to provision
business services, making it simpler to reconcile policies (or
determine a compensation plan when reconciliation is not possible).

• Outside-in applications are service-oriented from the start.
Whether an service oriented platform is constructed greenfield,
or with legacy technologies, taking an outside-in point of view on
architecture requires build out of the architecture such that limits of
the underlying technologies are entirely encapsulated - or they are
replaced.

Our view is that an outside-in point of view is isomorphic to Web
Services implemented to realize the goals of future enterprises. The
result of taking an outside-in point of view is that the architecture put
into place is service (and only service) oriented, whereas an inside-
out architecture is a hybrid architecture which is difficult to manage.
Because of this, we also advocate that it may make sense to transition
to an outside-in architecture even when architectural goals are not
to provision tomorrow’s enterprise since doing so can simplify the
runtime by eliminating superfluous components as well as simplify
application integrations. Architecture simplification is a prerequisite to
effectively using it to serve the needs of multiple lines of business even
within a single enterprise.

Our view is that an outside-in point of view is isomorphic to
Service Oriented Architectures that are properly constructed ...

Pushing services far down into an outside-in architecture stack,
as close to technology that provisions the business service
as possible, simplifies an architecture often by obviating the
need of middleware that has become superfluous over time ...
eliminating, in many cases, the need for out-of-process network
communication.

��

After reading the preceding section, the reader could ask the question
“How do we start?” and criticize us in our discussion of the outside-
in point of view for not really providing an answer to that question.
Our understanding of technologies, methodologies, and architectures
relating to the inside-out point of view allows us to intuit a starting
point when taking that point of view, but the reader could suggest
that a starting point for an outside-in point of view is not even
suggested.

We tackle this head on by suggesting that there are at least two
starting points worthy of consideration:
1. Start exactly where you’d start if adopting an inside-out point

of view … but don’t stop until, like Rearden, you have fully
transformed your architecture.

2. Start from scratch!

The Evolutionary Path
Embarking on a program that modernizes and transforms a non-
service oriented architecture to one that is could be a multi-year
endeavor depending upon the size of an enterprise’s application
portfolio. And grappling with where to start service enablement
requires detailed knowledge of what is in the portfolio – from
what the applications functionally do, to how specific application
functionality can be linked to a web service technology stack and the
cost of doing same. For legacy applications (e.g., some Cobol/CICS
application running on an AS/400), unconventional means to expose
functionality as services may be required. For example: it may be
necessary to implement some IBM MQ-based or some SQL adapter-
styled interface to an application running on an AS/400 in order to
surface behavior to a service level, or it might be expedient to use
some binary to XML transformation (either software or hardware
based) to do such. Or, it might be possible to actually compute web
service interfaces and implementations by exploiting the metadata
rich environments that either already exist or that could be created in
today’s enterprise IT environment.

The word metadata means data or information about other data.
Modern application development and runtime environments contain
enough metadata to support the automatic or nearly automatic
generation of services, making their implementation faster, easier, of
higher quality quickly, and easier to support. And it is feasible to hand
construct this metadata where it may not exist in older environments.

Consider the kinds of application infrastructure components
commonly found in enterprise application development and runtime
environments today, and the metadata associated with them:
• Relational databases contain metadata about the structure of tables,

triggers, views, users, stored procedures, and functions that make
it possible to map database entities, data types and functionality to
their analogs in C#, Java, or other modern programming languages.

• XML contains both content and structure information (especially
when accompanied by XML Schema definitions) that make it
possible to map content both to relational structures, or objects
manipulated in C#, Java, or other modern programming languages.
XML also may be mapped to HTML and stylized with style sheets for
a standardized rendering that appears to be custom.

• CASE tools that are used to model behavior in application systems
contain metadata.

• Runtime environments or modern programming languages like C#
and Java are dynamic and can be introspected. This means that class
structure can be examined while service applications run, or new
classes can be created on the fly and dynamically loaded into the
runtime to perform some task, or object methods can be invoked in
some generic fashion.

• Code libraries, today called jar, war, ear, assembly, or DLL files, can
be introspected to understand what code does (e.g., it invokes SQL
database functionality or requires XML/XSLT functionality), and what
code does not do (useful in test coverage analysis).

• Source code can be annotated both for document generation
purposes, and also runtime attribute management purposes. .NET,
in particular, makes it possible to implement custom attributes
on classes or methods, and this metadata can be introspected as
noted above at design/implementation/test time, or introspected at
runtime.

• Application infrastructure like HTTP or J2EE servers, or Notification
Event Brokers often are now configured using XML. XML can be
easily read to understand specifics of configurations, and to take
advantage of them.

• Web Services are described using WSDL, and runtime messaging
is performed using SOAP – both XML. This type of XML could be
modified to include important security information, enrich data, or
even redirect a request.

• Modern development environments, often called SDEs or IDEs, use
ANT, NANT, or MSBUILD makefiles. Microsoft has built out a .NET
framework around MSBUILD such that new code build tasks can
be programmatically introduced when the presence of certain code
artifacts is detected.

• Workflow IDEs often serialize workflow graphs and relating rule
bases using XML.

The How Do We Start Conundrum

��

Today’s development and deployment environments contain a treasure
trove of information about components in an application platform
such that it becomes trivial in certain (many) cases to generate web
services automatically. For instance: it is straightforward to leverage
the metadata about stored procedures (e.g., data types, procedure
signatures) in a database to automatically generate simple database
client-styled web services that can be deployed in a web service-
enabled web application (http) server and transparently wrapped
with a common security policy. The same metadata also can be
used to automatically generate web service client application code.
Code generation as the phrase is used here is template-based,
straightforward to implement and maintain, and can be provisioned
using 3rd party or bespoke code generation tools.

It is possible to implement template-based code generators to
generate Web Services code above database or 3rd party WSDL (or
other) functionality, parts of the User Interface, build files, event
publishers, fault managers, stubs for event handlers, workflow
and transformation (e.g. XSLT) graphs, and configurations for
deployment into simple to sophisticated operational environments.
Such techniques make it possible to optimize the use of people, so
their skills can be applied to real problems or so that fewer resources
are required. They also enable standardized use of infrastructure
services and functionality developed for reuse. These work together to
optimize code fault resolution, improving time to market with flexible
and high quality software solutions - the basis of a sound ROI model.

This approach yields a web service wrapper around existing platform
functionality which serves as a layer of encapsulation around
applications so that, as determined by an application portfolio
management strategy, applications can be modified to be service
oriented. Such an encapsulation layer represents the first step in
transforming an existing platform into a service oriented one over time
and in very controlled steps.

Modern technology platforms are instrumented in ways that prove
useful in constructing new or transforming existing architectures
to service oriented ones. Template-based code generation
techniques can be used to generate web services from existing
data models and middleware all the way up to and including user
interfaces.

Convergence of New I.T. Architectures
and Tools

High tech
soft touch

Interaction
Tools

(productive
friction)

loose coupling

exception conditions

scale out

Collaboration On
Demand

Resources On Demand
- Flexible access to distributed rersources
- Rapid incremental improvements

Virtualization
Architectures

Service
Oriented

Architectures

- Social software
- Wireless access
- eLearning

��

Start From Scratch?
Many CIOs and IT executives hope that the costs and risks of
transforming a non-service oriented architecture to a service oriented
one can be amortized over time, and who can blame them. Most
have probably spent a considerable sum developing the current
architecture, so the last thing any IT executive wants to ask for is
new budget sufficient to fund still more infrastructure-level activities
or require their companies to choose between new functionality or
resolved infrastructure issues.

Rearden is a kind of existence proof that demonstrates there are
strategies to successfully transform a non-service oriented architecture
to one that is service oriented. A rather nice existence proof, too! But
taking the second option is not as drastic as it sounds.
We have experienced many changes in the technology world during
the last 20 years that have been driven by Moore’s Law, and we’ve
seen no signs that Moore’s law and other “laws” forcing or enabling
significant change won’t continue to hold true for the next 20 years:
• We see an increase in broadband capacity so significant and offered

at commodity prices that we are able to install no less than T1s at
our homes – provisioned by the local cable company – making it
possible to run a business on redundant Dell or HP servers racked
in a small home closet (a.k.a. data room), together with a modicum
of battery backup sufficient to see these systems through relatively
infrequent power outages.

• We’ve seen changes in the economics of disk storage so that
companies like Amazon offer distributed storage solutions for the
nominal monthly price of US 15¢/gigabyte.1 These economics,
applied to network bandwidth, memory, CPU speed and disk
storage lead us to take a cavalier attitude toward software
performance and scalability, which we frequently improve simply by
adding another Linux box, or running to the electronics store to buy
another gigabyte of RAM.

• We’ve also seen a growing enterprise willingness to outsource IT
services that do not represent strategic value or core competency.
EDI value-added networks have evolved and become less important,
but they still exist. Web application and email hosting is now
commonplace, as is managed application hosting. We’ve seen
enterprise application vendors significantly invest to service enable
their offerings, and specialize them into business domains as a
means to evolve application hosting to the Software as a Service
(SaaS) model. Global business process outsourcing companies
provide companies with opportunities to outsource business
processes permanently, or to outsource them while they invest to
develop next generation processes. Pervasive- and utility-styled
managed computing capabilities are maturing to the point that
establishing a service grid that hosts business service-oriented
applications is a reality that is well within reach.

These kinds of radical changes, maturing of application platforms,
and acceptance of outsourced managed services suggest that
while architecture transformation could be feasible, a good return
on investment could also result from starting from scratch (almost
starting from scratch … breathe deeply and relax) by building out a
service oriented architecture using the services of 3rd party application
platform products (some, like SAP, are, themselves, being transformed
to being service oriented) and leveraging the innovations of modern
operating system, development platforms and the services of external
business partners.

TradeCard indicates it sees a growing acceptance by its clients to
leverage services external to their own IT and business platforms.
Rather than investing in one-off portal-based applications to integrate
various business partners together, TradeCard clients are increasingly
willing to leverage the now mature service API TradeCard has
implemented, and use it as their own API to enable interoperability
across their supply chain networks. TradeCard’s market penetration
in specific industry verticals shows that the ability to reuse workflows
within these verticals is great, which underscores the point that
starting from scratch does not really mean starting from nothing.

1 Jungle Disk, http://www.jungledisk.com/, Feb 2008

��

While we do not subscribe to the belief that the benefits of a service
oriented architecture are hype, neither do we believe that architects
and lead technologists have thought properly about the requirements
that make implementation of a service oriented architecture
successful.

We believe one reason that we don’t see the success we’d expect is
that service orientation too often is viewed as an add-on to existing
architectures … a kind of wrapper put around existing functionality
solely to simplify systems integration. An inside-out approach has
become a kind of path of least resistance in the pursuit of Web
Services promises, but wrapping an existing architecture with a
Web Services interface layer does not transform the architecture
underneath to a service oriented one.

A second reason is that policy is not considered a strong architecture
driver that is critical to provisioning process networks for future
enterprises. The architectural implications of making it such challenge
the conventional wisdom of architecting what we know today as
enterprise software platforms, and demand that we rethink our best
practices.

Taking an outside-in point of view requires that we separate concerns
from the start. Our application platforms must be distributed
from their beginning, rather than become so by attaching some
distribution layer to our platform as we grow to require it. We must
understand how we have permitted past limits of our particular
business organizational models to be built into our architectures
and how, now that technology innovations enable us to challenge
these limits, we must remove them from our computing platforms to
effectively leverage infrastructure innovations like Cassatt’s, and build
out business application platforms like Rearden’s and TradeCard’s
that respond to change rather than impede ability to manage it. The
mythical cost of over-engineering an architecture as it relates to such
gains should be questioned since architecture simplification could
more than self-fund properly building out an architecture the first
time.

Giving proper focus to policy within an architecture - across all
architecture layers - makes interoperability at the business layers of
an architecture feasible, and this has tremendous organizational
implications and is key to forming new process networks in response
to market shifts. Further, the ability to drive architectural behavior
as a function of policy is prerequisite to distributing software-based
business capabilities to a grid of services (e.g., a service grid) or to a
utility computing platform, and managing infrastructure in a way that
well surpasses the goals that terms like software as a service and cloud
computing have come to mean. The ability to dynamically re-provision
a system while it is running as a function of policy that directly aligns
with the wishes of a business community of practice exposes a set of
new opportunities to collaborate in business on scales that current day
architectures cannot support.

In Summary

��

Tom Winans is the principal consultant of Concentrum Inc., a
professional software engineering and technology diligence
consultancy. His client base includes Warburg Pincus, LLC
and the Deloitte LLP Center for Edge Innovation. Tom may
be reached through website at
http://www.concentrum.com.

John Seely Brown is the independent co-chairman of the
Deloitte LLP Center for Edge Innovation where he and his
Deloitte colleagues explore what executives can learn from
innovation emerging on various forms of edges, including
the edges of institutions, markets, geographies and
generations. John may be reached through Deloitte LLP, or
his web site at http://www.johnseelybrown.com.

A copy of this paper can be found on either of the authors’ web sites.

About The Authors

About Deloitte

Deloitte refers to one or more of Deloitte Touche Tohmatsu, a Swiss Verein, and its network
of member firms, each of which is a legally separate and independent entity. Please see www.
deloitte.com/about for a detailed description of the legal structure of Deloitte Touche Tohmatsu
and its member firms. Please see www.deloitte.com/us/about for a detailed description of the legal
structure of Deloitte LLP and its subsidiaries.

Copyright © 2008 Deloitte Development LLC. All rights reserved.

