

MOVING INFORMATION TECHNOLOGY PLATFORMS

TO THE CLOUDS
INSIGHTS INTO IT PLATFORM ARCHITECTURE TRANSFORMATION

THOMAS B WINANS AND JOHN SEELY BROWN

23 APRIL 2009

DELOITTE CENTER FOR THE EDGE – WORKING PAPER (DRAFT) – MAR 2009

Thomas B Winans and John Seely Brown Page 2

INTRODUCTION

The Long-Term Credit Bank (LTCB) of Japan underwent a very traumatic reorganization
beginning in 1998 following Japan’s economic collapse in 1989. The bank was beset with
difficulties rooted in bad debts. Possible mergers with domestic banks were proposed,
but the bank eventually was sold to an international group which set about putting the
bank back together, launching it in June 2000 as Shinsei Bank, Limited.

LTCB’s IT infrastructure was mainframe based, as many banks’ infrastructure was at the
time (and still is). Acquisitions and organic growth resulted in a variety of different
systems supporting similar bank card products. Among the many challenges with which
the bank had to grapple as it began its new life was IT infrastructure consolidation,
which, in part, translated into deciding how to consolidate bank card products and their
supporting IT systems without further disruption to its bank clientele. The bank could
have issued a new card representing bank card features and benefits of its individual
products consolidated into a single one, but this would have violated the constraint to
not further disrupt its client base, risking loss of more clients. Or it could have continued
to accept the entire bank card products as it had in the past but, at the same time, find
a way to transparently consolidate systems and applications supporting these cards into
a very reduced set of systems – ideally one system – that would enable the retirement
of many others.

In sum, Shinsei took this second path. Conceptually, and using IT terminology, the bank
viewed its various card products as business interfaces to Shinsei Bank that it had to
continue to support until a card type no longer had any users, after which the product
(the card type) could be retired. Further, to effect consolidation, the bank had to
implement an IT application platform supporting both its future and its legacy. The bank
IT group set about this mission, empowered by the freedom its business interfaces
provided, and, over the next 3-5 years, replaced many (potentially all) of its mainframe
legacy systems using applications constructed with modern technologies and hosted on
commodity hardware and operating systems.

Shinsei’s example is a direct analog to what IT teams in corporations today must do to
transform legacy/existing inside-out application platforms into outside-in service oriented
ones that effectively leverage the capabilities that are afforded through use of cloud and
service grid technologies. We begin this paper with a very brief explanation of outside-in
vs. inside-out architecture styles, clouds and service grids. Then we explore strategies
for implementing architecture transformations from inside-out to outside-in and issues
likely to be encountered in the process.

GOING FORWARD ASSUMPTIONS AND DISCLAIMERS

Globalization, economic crises, technology innovations, and many other factors are
making it imperative for businesses to evolve away from current core capabilities toward
new cores. Further, there appear to be indicators that these businesses – if they are to
participate in 21st century business ecosystems for more than just a few years – will
have to make more core transitions during their corporate life than their 20th century

DELOITTE CENTER FOR THE EDGE – WORKING PAPER (DRAFT) – MAR 2009

Thomas B Winans and John Seely Brown Page 3

counterparts, so the capability to leverage technology to efficiently transform is
important to corporate survival.

We believe that clouds, service grids, and service oriented architectures having an
outside-in architecture style are technologies that will be fundamental to successfully
making such corporate transformations. There are near term objectives, like the need
for cost and resource efficiency or IT application portfolio management that justify use
of these technologies to rearchitect and modernize IT platforms and optimize the way
corporations currently deploy them. But there are longer term business imperatives as
well, like the need for a company to be agile in combining their capabilities with those of
their partners by creating a distributed platform and it is at these corporations we
specifically target this paper.

OUTSIDE-IN AND INSIDE-OUT ARCHITECTURE STYLES

Architecture styles define families of software systems in terms of patterns for
characterizing how architecture components interact. They define what types of
architecture components can exist in architectures of those styles, and constraints on
how they may be combined. They define how components may be combined together
for deployment. They define how units of work are managed, e.g., are they
transactional (n-phase commit) or not. And they define how functionality that
components provision may be composited into higher order functionality and how such
can be exposed for use by human beings or other systems.

The outside-in architectural style is inherently top-down and emphasizes decomposition
to the functional level but not lower, is service-oriented rather than application-oriented,
it factors out policy as a first class architecture component that can be used to govern
transparent performance of service-related tasks, and it emphasizes the ability to adapt
performance to user/business needs without having to consider the intricacies of
architecture workings1.

The counter style, what we call inside-out, is inherently bottom-up and takes much more
of an infrastructural point of view as a starting point, building up to a business functional
layer. Application platforms constructed using client server, object-oriented, and 2/3/n-
tier architecture styles are those to which we apply the generalization inside-out
because they form the basis of enterprise application architectures today, and because
architectures of these types have limitations that require transformation to scale in a
massive way vis-à-vis outside-in platforms.

Implementation of an outside-in architecture results in better architecture layering and
factoring, and interfaces that become more business than data oriented. Policy becomes
more explicit, and is exposed in a way that makes it easier to change it as necessary.
Service orientation guides the implementation, making it more feasible to integrate and
interoperate using commodity infrastructure rather than using complex and inflexible
application integration middleware.

1 An outside-in architecture is a kind of service oriented architecture (SOA) which is fully elaborated in
Thomas Erl’s book called “Service-Oriented Architecture: Concepts, Technology, and Design”1, so we will not
discuss SOA in detail in this paper.

DELOITTE CENTER FOR THE EDGE – WORKING PAPER (DRAFT) – MAR 2009

Thomas B Winans and John Seely Brown Page 4

As a rule, it is simpler to integrate businesses at functional levels than at lower
technology layers where implementations might vary widely. Hence we emphasize
decomposition to the functional level – which often is dictated by standards within a
market, regulatory constraints on that market, or even accounting (AP/AR/GL) practices.

For a much more detailed discussion of outside-in vs. inside-out architecture styles,
please see the working paper we call “Web Services 2.0”i.

CLOUDS AND SERVICE GRIDS

Since a widely accepted industry definition of Cloud Computing - beyond a relationship
to the Internet and Internet technologies – does not exist at present, we see the term
used to mean hosting of hardware in an external data center (sometimes called
infrastructure as a service), utility computing (which packages computing resources so
they can be used as a utility in an always on, metered, and elastically scalable way),
platform services (sometimes called middleware as a service), and application hosting
(sometimes called software or applications as a service).

The potential of cloud computing is not limited to hosting applications in someone else’s
data center, though cloud offerings can be used in this way to elastically manage
computing resources and circumvent the need to buy new infrastructure, train new
people, or pay for resources that might only be used periodically. Special file system,
persistence, data indexing/search, payment processing, and other cloud services can
provide benefits to those who deploy platforms in clouds, but their use often requires
modifications to platform functionality so that it interoperates with these services.

Before the term cloud, the term service grid was sometimes used to define a managed
distributed computing platform that can be used for business as well as scientific
applications. Said slightly differently, a service grid is a manageable ecosystem of
specific services deployed by service businesses or utility companies. Service grids have
been likened to a power or utility grid … always on, highly reliable, a platform for
making managed services available to some user constituency. When the term came
into use in the IT domain, the word service was implied to mean web service, and
service grid was viewed as an infrastructure platform on which an ecology of services
could be composed, deployed and managed.

The phrase service grid implies structure. While grid elements, servers together with
functionality they host within a service grid, may be heterogeneous vis-à-vis their
construction and implementation, their presence within a service grid implies
manageability as part of the grid as a whole. This implies that a capability exists to
manage grid elements using policy that is external to implementations of services in a
service grid (at the minimum in conjunction with policy that might be embedded in
legacy service implementations). And services in a grid become candidates for reuse
through service composition – services outside of a grid also are candidates for
composition, but the service grid only can manage services within its scope of control.
Of course, service grids defined as we have above are autonomic, can be recursively
structured, and can collaborate in their management of composite services provisioned
across different grids.

DELOITTE CENTER FOR THE EDGE – WORKING PAPER (DRAFT) – MAR 2009

Thomas B Winans and John Seely Brown Page 5

Clouds and service grids both have containers. In clouds, container is used to mean a
virtualized image containing technology and application stacks. The container might hold
other kinds of containers (e.g., a J2EE/JavaEE application container), but the cloud
container is impermeable, which means that the cloud does not directly manage
container contents, and the cloud contents do not participate in cloud or container
management. In a service grid, container is the means by which the grid provides
underlying infrastructural services, including security, persistence, business transaction
or interaction life cycle management, and policy management. In a service grid, it is
possible for contents in a container to participate in grid management as a function of
infrastructure management policies harmonized with business policies like service level
agreements. It also is possible that policy external to container contents can shape2 how
the container’s functionality executes. So a service grid container’s wall is permeable vis-
à-vis policy, which is a critical distinction between clouds and service grids3.

A cloud, as defined by the cloud taxonomy noted earlier, is not necessarily a service
grid. There is nothing in cloud definitions that require all services hosted in them to be
manageable in a consistent and predetermined way4. There is no policy engine required
in a cloud that is responsible to harmonize policy across infrastructure and business
layers within or across its boundaries, though increased attention is being given
software vendors to policy-driven infrastructure management. Clouds are not formed
with registries or other infrastructure necessary to support service composition and
governance.

However, a service grid can be formed by implementing a cloud architecture, adding
constraints on cloud structure, and adding constraints on business and infrastructure
architecture layers so that the result can be managed as both a technology and a
business platform.

For a much more detailed discussion of architectures in clouds and service grids, please
see the working paper we call “Demystifying Clouds: Exploring Cloud and Service Grid
Architectures”ii.

ARCHITECTURE TRANSFORMATION

How to construct an outside-in architecture that meets next century computing
requirements is a topic that requires debate. Should we leverage our past investments in

2 The sense of the word shape is consistent with how policy is applied in the telecom world where, for
example, bandwidth might be made available to users during particular times in the day as a function of
total number of users present.
3 Cloud management typically is exposed by the cloud vendor through a dashboard. Vendors like Amazon
also make functionality underlying the dashboard available as web services such that a cloud users’
functionality could programmatically adjust resources based on some internal policy. A service grid is
constructed to actively manage itself as a utility of pooled resources and functionality for all grid users.
Hence, a service grid will require interaction with functionality throughout the grid and determine with the
use of policy extension points whether or not resource supply should be adjusted.
4 This should not suggest that clouds and elements in them are not managed, because they are. Service
grids, however, impose an autonomic, active and policy-based management strategy on all of the elements
within their scope of control so that heterogeneous application and technology infrastructure can be
managed through a common interface that can be applied to fine grained grid elements as desired or
necessary.

DELOITTE CENTER FOR THE EDGE – WORKING PAPER (DRAFT) – MAR 2009

Thomas B Winans and John Seely Brown Page 6

infrastructure, bespoke software development, and 3rd party software products? If so,
how can we self-fund this and how long will it take? Or do we go back to the IT funding
well with rationale that defends our need now to develop a new service platform and
jettison that multimillion dollar investment we just barely finished paying off?

The answer is: it depends. We’ve seen both approaches taken. And we’ve seen that
development of a new platform is no longer as drastic as it sounds.

TRANSFORMING AN EXISTING ARCHITECTURE

It is enticing to think that one could implement an outside-in architecture simply by
wrapping an existing inside-out application platform with Web Service technologies to
service-enable it.

Not quite.

It is possible to do that and then evolve the inside-out architecture to an outside-in one
as budget and other resources allow using a strategy very similar to Shinsei Bank’s
business interface strategy discussed in the introduction of this paper. But the fact that
an inside-out architecture typically is not service-oriented – even though it might be
possible to access application functionality using web services – suggests that just using
the wrapper strategy will not yield the benefits of a full outside-in architecture
implementation, and compensation for inside-out architecture limits may even be more
costly than taking an alternative approach.

To illustrate the process of converting an inside-out architecture to an outside-in one,
we consider how a typical web application platform could be converted to an outside-in
architecture in which some web application accesses all critical business functionality
through a web services layer, and web services are hosted in a cloud, a service grid, or
internally.

From a layered perspective, a Web Application usually can be described by a graphic of
a 3-tiered architecture like the one below.

Network and Computing Infrastructure

Data Layer

Business Logic Layer

User Interface Layer

Figure 1

At the top of the graphic we see a user interface layer, which usually is implemented
using some web server (like Microsoft’s IIS or Apache’s HTTP web server) and scripting

DELOITTE CENTER FOR THE EDGE – WORKING PAPER (DRAFT) – MAR 2009

Thomas B Winans and John Seely Brown Page 7

languages or servlet-like technologies that they support. The second layer, the business
logic layer, is where all business logic programmed in Java, C#, Visual Basic,
php/python/perl/tcl (or pick your favorite programming language that can be used to
code libraries of business functionality) is put. The data layer is where code that
manipulates basic data structures goes, and this usually is constructed using object
and/or relational database technologies. All of these layers are deployed on a server
configured with an operating system and network infrastructure enabling an application
user to access web application functionality from a browser or rich internet client
application.

The blue and red lines illustrate that business and data logic sometimes are commingled
with code in other layers of the architecture, making it difficult to modify and manage
the application over time (code that is spread out and copied all over the architecture is
hard to maintain). Ideally, the red and blue lines would not exist at all in this diagram,
so it is here where we start in the process of converting this inside-out architecture to
an outside-in one.

Addressing Architecture Layering and Partitioning

The first step of transitioning from one architecture style to another is to correct
mistakes relating to layering wherever possible. This requires code to be cleaned and
commented, refactored, and consolidated so that it is packaged for reuse and orderly
deployment, and so that cross-layer violations (e.g., database specifics and business
logic are removed from the UI layer, or business logic is removed from the data layer)
are eliminated.

Assuming layering violations are addressed, it makes sense then to introduce a service
API between the User Interface Layer and the Business Logic Layer as shown in the
slightly modified layer diagram below.

Network and Computing Infrastructure

Data Layer

Business Logic Layer

User Interface Layer

Service1 Service2 ServicenÉ

Figure 2

The service layer illustrated here is positioned between the User Interface and lower
architecture layers as the only means of accessing lower level functionality. This means

DELOITTE CENTER FOR THE EDGE – WORKING PAPER (DRAFT) – MAR 2009

Thomas B Winans and John Seely Brown Page 8

that the concerns of one architecture layer do not become or complicate the concerns at
other levels.

But while we may have cleaned up layering architecture violations, we may not have
cleaned up partitioning violations. Partitioning refers to the “componentizing” or
“modularizing” of business functionality such that a component in one business
functional domain (e.g., order management) accesses functionality in another such
domain (e.g., inventory management) through a single interface (ideally using the
appropriate service API). Ensuring that common interfaces are used to access business
functionality in other modules eliminates the use of private knowledge (e.g., non-public
APIs) to access business functionality in another domain space. Partitioning also may be
referred to as factoring. When transitioning to a new architecture style, the first stage of
partitioning often is implemented at the Business Logic Layer, resulting in a modified
architecture depicted as follows:

Network and Computing Infrastructure

Data Layer

User Interface Layer

Service1 Service2 ServicenÉ

Business
Domain1

Business
Domain2

Business
Domainn

É

Figure 3

The next phase of transformation focuses attention on partitioning functionality in the
database so that, for example, side effects of inserting data into the database in an area
supporting one business domain does not also publish into or otherwise impact the
database supporting other business domains.

Why go to such trouble?

Because it is possible to transition the architecture in figure 1 to become like one of the
depictions below. Figure 4 illustrates a well organized platform that might be centrally
hosted.

DELOITTE CENTER FOR THE EDGE – WORKING PAPER (DRAFT) – MAR 2009

Thomas B Winans and John Seely Brown Page 9

Network and Computing Infrastructure

User Interface Layer

Service1 Service2 ServicenÉ

Business
Domain1

Business
Domain2

Business
Domainn

É

Data
Domain1

Data
Domain2

Data
Domainn

É

Figure 4

Figure 5 illustrates a well organized platform that could be hosted in a service grid or
even many service grids.

Network and
Computing

Infrastructure

User Interface Layer

Service1 Service2 ServicenÉ

Business
Domain1

Business
Domain2

Business
Domainn

É

Data
Domain1

Data
Domain2

Data
Domainn

É
Network and
Computing

Infrastructure

Network and
Computing

InfrastructureÉ

Global Networking Infrastructure

Figure 5

DELOITTE CENTER FOR THE EDGE – WORKING PAPER (DRAFT) – MAR 2009

Thomas B Winans and John Seely Brown Page 10

Figures 4 and 5 make it simple to see that services and their supporting business logic
and data functionality could be replaced easily with an alternative service
implementation without negatively impacting other areas of the architecture provided
that functionality in one service domain is accessed by another service domain only
through the service interface. And such capability is required in order to simplify
management of an application portfolio implemented on such an architecture as well as
distribute and federate service implementations.

Externalizing Policy

The next step toward implementing an outside-in architecture is to externale both
business and infrastructure policies from any of the functionality provisioning services
illustrated in the figures above.

Our use of the word policy connotes constraints placed upon the business functionality
of a system, harmonized with constraints on the infrastructure (hardware and software)
that provisions that functionality. These constraints could include accounting rules that
businesses follow, role-based access control on business functionality, corporate policy
about the maximum allowable hotel room rate that a non-executive employee could
purchase when using an on-line reservation service, rules about peak business traffic
that determine when a new virtualized image of an application system should be
deployed, and the various infrastructural policies that might give customer A preference
over customer B should critical resource contention require such.

Policy extension points provide the means by which policy constraints are exposed to
business and corresponding infrastructural5 functionality and incorporated into their
execution. They are not configuration points which are usually known in advance of
when an application execution starts and that stay constant until the application
restarts. Rather, policy extension points are dynamic and late bound to business and
infrastructural functionality, and they provide the potential to dynamically shape
execution of it within the deployment environment’s runtime.

Externalizing policy highlights a significant distinction between inside-out and outside-in
architecture styles. Inside-out architectures usually involve legacy applications in which
policy is embedded and thus externalizing it is – at best – very difficult. Where
application policies differ in typical corporate environments, it becomes the responsibility
of integration middleware to implement policy adjudication logic that may work well to
harmonize policies over small numbers of integrated systems, but this will not generalize
to manage policy in larger numbers of applications as would be the case in larger value
chains. To illustrate the problem of scaling systems where policy is distributed
throughout it, consider the system illustrated in figure 6.

5 Rob Gingell and the Cassatt team are incorporating policy into their next generation utility computing
platform. In their parlance, policy primitives represent metrics used by policy extension points in support of
management as a function of application demand, application service levels, and other policy-based priority
inputs such as total cost. The policy-based approach to management is being implemented so that
infrastructure policy can be connected to business service level agreements. This will be fundamental to
automating resource allocation, service prioritization, etc., when certain business functionality is invoked, or
when usage trends determine need. Such capability will prove invaluable as the number of elements within
a cloud or service grid becomes large.

DELOITTE CENTER FOR THE EDGE – WORKING PAPER (DRAFT) – MAR 2009

Thomas B Winans and John Seely Brown Page 11

Figure 6

Figure 6 illustrates a system where business policy exists in multiple locations of the
architecture as indicated by areas outlined in red. Scaling this architecture would be
disastrous because policy would be distributed as copies (or, worst case, as different
code bases) over a very complex deployment environment. But a well factored
environment like the ones illustrated in figures 4 and 5 have business logic located in a
single logical architecture layer and, from it, policy can be externalized with the
development of adapters or similar architecture components that play the role of policy
extension points described above. Once this is accomplished, the architecture we started
with now begins to resemble the architecture illustrated in figure 7 below, in which
policy has been externalized, possibly federated, and put under the control of policy
management services. Once policy from business functionality is externalized, it can be
harmonized with infrastructure policy as feasible/desired.

DELOITTE CENTER FOR THE EDGE – WORKING PAPER (DRAFT) – MAR 2009

Thomas B Winans and John Seely Brown Page 12

Figure 7

Replacing Application Functionality with (Composite) Services

The final step in transforming an inside-out platform to an outside-in platform is to
replace business application code that coordinates invocation of multiple services with
composite service if this is possible.

In figure 7 we use the term composite service to mean business services formed by
combining other business services (or methods thereof) together to form coarse (larger)
business functions that are peer with application functionality. For example, we might
see services to manage order fulfillment, invoice submission and payment processing,
orchestrations with which billing staff use to prepare for invoicing, logistics planning, and
so forth. As a kind of mental mapping between figures 1 and 7, the composite service
functionality in figure 7 maps to business logic that has leaked into web pages of the
web application in figure 1 (shown with red and blue lines) that are used to manage
order fulfillment, invoice submission, etc.

Orchestration is often equated to workflows used to coordinate some ordering of service
method invocations. Workflow and other business process management technologies
are now well-known within today’s corporations. Workflow engines for web services
have been commoditized through open source initiatives and by commercial software
vendors. These engines make it possible to implement composite web services as either
state machine or sequential workflows. Use of state machine flows make it possible to
avoid prescriptively dictating how systems interoperate. They also provide the

DELOITTE CENTER FOR THE EDGE – WORKING PAPER (DRAFT) – MAR 2009

Thomas B Winans and John Seely Brown Page 13

opportunity to incorporate human intelligence tasks to help resolve exception conditions
that often emerge from composite services or straight through processing flows6.

STARTING FROM SCRATCH – MAYBE EASIER TO DO, BUT SOMETIMES HARD TO SELL

Many CIOs and IT executives hope that the costs and risks of transforming a legacy
platform architecture to an outside-in one can be amortized over time, and who can
blame them. Most have probably spent a considerable sum developing the current
architecture, so the last thing any IT executive wants to ask for is new budget sufficient
to fund still more infrastructure-level activities or require their companies to choose
between new functionality or resolved infrastructure issues.

But we have experienced many changes in the technology world during the last 20 years
that strongly suggest there is value in at least considering whether or not implementing
outside-in architectures from scratch would be worthwhile. An interesting catch here is
that this argument could have been made and was made at each new stage of
development over the last 20 years. Why is the story now so different? Because today’s
context versus just a few years ago is qualitatively different. Significant broadband
capacity, economic storage (both self- and cloud-hosted), cheap memory and modern
caching services, commodity 64-bit operating systems, XML accelerators and
sophisticated application protocol management capabilities, commoditized
integration/interoperability technologies, virtualization and utility computing, cloud and
service grid computing, and other relatively recent innovations challenge the traditional
wisdom that it is better to evolve and extend an existing platform than it is to create a
new one that could circumvent problems from retrofitting an existing architecture in
ways quite counter to its original design.

Coupled with these advances are elaborations of industry domains in the form of
industry or business solution maps. These maps are used by consulting companies and
software vendors to provide business process oriented views of industry, define roles
played and responsibilities performed within business processes, begin (at least) to build
out functional decompositions of the industry domain, and map processes to technology
solutions where feasible. Using these maps as starting points streamlines process and
data mapping efforts that used to take months to even several years to perform (in
larger companies), and results in a detailed functional view that is necessary to build a
well formed outside-in architecture.

Building from scratch is really not the same as starting with nothing but a blank sheet of
paper. While it is unusual to find a company able to take a purely greenfield approach
(unless it is a startup), there are ways for established businesses to get comfortable
with taking a greenfield approach to developing an outside-in architecture, and
subsequently developing a strategy to implement it even if using components of existing
platforms.

6 Ultimately, it may prove necessary to incorporate a constraint engine into the way that services are
composited to harmonize policies and dynamically govern execution of the composite.

DELOITTE CENTER FOR THE EDGE – WORKING PAPER (DRAFT) – MAR 2009

Thomas B Winans and John Seely Brown Page 14

CONCLUDING REMARKS

Transforming an inside-out architecture to an outside-in architecture can be a lengthy
process – it is a function of existing system complexity, size, and age. One company
who shared with us its experiences when making such a transition was Rearden
Commerce. Prior to three and a half years ago, Rearden’s architecture was composed
like many of the web applications we see today: three tiered, open source web and
application server technologies, and a relational database. Rearden’s web application
exposed a framework to which merchant clients could interface to Rearden “services” or
functions. Rearden’s management team had the foresight to recognize the company’s
need to create a platform (not just an application), and the corresponding need to make
architecture changes to support more rapid development and simpler deployment of
new services. By this time, Rearden already had clients, so it understood that change
had to be made transparently to its user base whenever possible or in a way that the
user base viewed as a positive upgrade of capability to which they could migrate as this
became expedient to their business.

Rearden strengthened its leadership team with technologists who had participated in
web service infrastructure companies and could guide in Rearden’s architecture
modernization. This new leadership team undertook a transformation of the company’s
3-tiered architecture to a service-oriented one over a two year period using a process
like the one described above. At the end of the two and a half year period, Rearden had
transformed its traditional web application architecture to a service oriented one with
externalized policy management.

When performing an architecture transformation, is it necessary that all architecture
components are entirely transformed – as was the case with Rearden? If there was
queue-based middleware in the old architecture, should it be replaced? Should all old
applications be replaced with custom applications having appropriate policy extension
points?

The answer to these questions is it depends. Certainly it is possible to replace enterprise
application integration technologies with commodity or open source technologies,
simplify them, or maybe – in some cases - even eliminate them. It is unlikely that
middleware supporting reliable messaging and long lived business transactions between
business partners needs to be totally replaced in or removed from an outside-in
architecture. But its use can be couched in ways that eliminate tight coupling between
partners, and commingling of business policy with integration functionality that makes
partner integration difficult to change as policies change or as a partner networks
expand.

Taking an outside-in point of view requires that we separate concerns from the start.
Application platforms should be viewed as distributed from their beginning rather than
be made so after the fact by attaching some distribution layer to them. We must
understand how we have permitted business security and access control models to be
built into our architectures and how, now that technology innovations enable us to
challenge these limits, we must remove them from our computing platforms to realize
business agility goals that will be demanded of an architecture in the 21st century.

DELOITTE CENTER FOR THE EDGE – WORKING PAPER (DRAFT) – MAR 2009

Thomas B Winans and John Seely Brown Page 15

Technologies we’ve used in the past can be useful to us in the future. Success in
implementing an outside-in architecture is less a function of technology than it is of a
business and technology architecture vision that forces business and technology
architects to view business capabilities from a global, outside in and top down
perspective.

DELOITTE CENTER FOR THE EDGE – WORKING PAPER (DRAFT) – MAR 2009

Thomas B Winans and John Seely Brown Page 16

ABOUT THE AUTHORS

Thomas B (Tom) Winans is the principal consultant of Concentrum Inc., a professional
software engineering and technology diligence consultancy. His client base includes
Warburg Pincus, LLC and the Deloitte Center for the Edge. Tom may be reached through
his website at http://www.concentrum.com.

John Seely Brown is the independent co-chairman of the Deloitte Center for the Edge
where he and his Deloitte colleagues explore what executives can learn from innovation
emerging on various forms of edges, including the edges of institutions, markets,
geographies and generations. He is also a Visiting Scholar and Advisor to the Provost at
USC. His web site is at http://www.johnseelybrown.com.

i Web Services 2.0, by Thomas B Winans and John Seely Brown, Deloitte, 2008
ii Demystifying Clouds: Exploring Cloud and Service Grid Architectures, by Thomas B Winans and John Seely
Brown, Deloitte, 2009

